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The Pattern Recognition System

Segmentation

sensor

Description

Classification

Decision

• Electricity, electronics, 
metrology

• Signal Processing
• Image Processing

•Geometry, topology, …

• Statistics
• AI 

• Robotics, …
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Shape classification

• Pattern recognition 
means:

– Choose good descriptors 
for your application => 
feature vector

– Use a classification rule 
to classify the feature 
vectors
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Shape classification

• Another example: cancerous 
cells

– Assume that we have a set of 
data already classified

– Let us chose 2 features : the 
mean μ and the standard 
deviation σ of the gray levels

– A new data point (*) has to 
be classified

• Generalisation:
– Feature vecotr x=[x1, x2, … 

xn]T
– Role of the classifier: assign 

a class label to a feature 
vector

– Separation of the classes in 
the feature space: decision 
line

σ
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Shape classification

• Another example: cancerous 
cells

– Assume that we have a set of 
data already classified

– Let us chose 2 features : the 
mean μ and the standard 
deviation σ of the gray levels

– A new data point (*) has to 
be classified

• Generalisation:
– Feature vecotr x=[x1, x2, … 

xn]T
– Role of the classifier: assign 

a class label to a feature 
vector

– Separation of the classes in 
the feature space: decision 
line
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Supervised vs unsupervised classifiers

• Supervised classifiers : 
– We have a training set, i.e. a set of feature vectors with their 

correct class label
– We have to build a classifiers that exploits this prior 

information
– Example : Optical Character Recognition
– Bayesian Classifiers
– Linear Classifiers
– Non-linear classifiers – neural networks

• Unsupervised classifiers
– We just have a set of feature vectors, without their class label
– We have to group similar vectors to create clusters, and 

identify those clusters
– Clustering algorithms
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Bayesian classifiers

• Probabilistic approach: 
– Feature vectors are assumed to come from 

a probability distribution function (pdf)
– We will design a classifier which will assign 

a feature vector to the « most probable » 
class: 
§ M classes w1, w2, … wM
§ A feature vector x
§ We classify x in class i if P(wi | x) > P(wj | x) 
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Bayesian classifiers

• Let us consider the two class problem, with known 
prior probabilities  P(w1) and P(w2)
– Easy to evaluate of not known

• The conditional pdfs p(x |wi) are also assumed known
– Can be identified from the training set

• Bayes Rule:

• Bayesian classification (maximum a posteriori)
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Bayesian classifiers

• Example : 1 feature, 2 
classes
– x0 indicated the separation 

between the classes
– There is obviously a 

classification error
– But it can be shown that the 

Bayesian classifier minimises 
the classification errors
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Bayesian classifiers

• Generalization to n classes:
– Assignation to the most probable class
– The decision surface between classes i and j has 

the equation
– We can also write it as follows:

where f(.) is a monotonally increasing function, 
called discriminant function.

– Decision will thus be taken to assign the feature 
vector to class wi if gi(x) > gj(x) for all j ≠ i

– The decision surface is given by

( | ) ( | ) 0i jP w x P w x- =
( ) ( ( | ))i ig x f P w xº
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Bayesian classification for normal laws

• Normal law : the pdf follows a Gaussian law:

– 1D: 

– lD : 

§ μi is the mean of class wi
§ Σi is the covariance matrix of size l x l, defined by
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Bayesian classification for normal laws

• Discriminant function:
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Bayesian classification for normal laws

• Example : 
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Bayesian classification for normal laws

• Special case, very frequent : Σi identical for all 
classes: Σi = Σ   
– The quadratic terms will disappear in the equation of 

the decision curves, as well as the constant ci
– Thus the discriminant function can be written as :

– Therefore the discriminant functions are linear and 
the decision curves (surfaces) hyperplanes
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Bayesian classification for normal laws

• Sub-particular case 1: Σ diagonal with equal 
values on the diagonal: Σ =σ2I
– The discriminant functions become

– And the decision hyperplanes are
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Bayesian classification for normal laws

• Thus
– The decision hyper plane 

passes by x0
– if P(w1)=P(w2), x0=(μ1+μ2)/2
– Since moreover, for every x

on the decision hyperplane, x-
x0 is also on the hyperplane, 
and since (μ1-μ2)T(x-x0)=0, the 
decision hyperplane is 
orthogonal to μ1-μ2
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Bayesian classification for normal laws

• If S is different from σ2I :

• Thus:
– The decision hyperplane passes 

by x0
– if P(w1)=P(w2), x0=(μ1+μ2)/2
– The decision hyperplane is not 

orthogonal to μ1-μ2, but to a linear 
transformation of it:Σ-1(μ1-μ2)
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Bayesian classification for normal laws

• Minimal distance classifier :
– If we neglect the constants, we have

11( ) ( ) ( )
2

T
i i i ig x x xµ µ-= - - S -

e id x µ= -

• if Σ =σ2I : the most 
probable class is the 
one that maximizes 
gi(x), i.e. which 
minimizes the 
Euclidean distance

• If Σ is not diagonal: the 
most probable class is 
the one that 
maximizes gi(x), i.e. 
which minimizes the  
Mahalanobis distance

( )1/ 21( ) ( )m i id x xµ µ-= - S -
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k nearest neighbor classifiers

• This algorithm does not make any assumption 
on the class pdfs

• k-NN algorithm: 
– We have a training set of feature vectors with their 

class label
– We classify the unknown vector x in the most 

represented class among the k nearest neighbors of 
x

– The error probability R is at least as large as the 
Bayesian one (Pe)
§ 1-NN : R < 2Pe
§ k-NN : R < (1+1/k) Pe
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k nearest neighbor classifiers

• Example:

IRM-T2

IRM-PD
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Linear classifiers

• Let us consider again the case of a linear discriminant 
function. The decision surfaces are hyper planes:

– w is called the weight vector and  w0 the threshold
– w is orthogonal to the decision surface
– We can also write
– Without any additional information, we can try to find the best 

vector w* which best separates the classes, i.e. such that
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Linear classifier: the perceptron

• Optimization process : 
– Search space : space of w
– Cost function:

– Optimization algorithm : gradient descent :  
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Linear classifier: the perceptron

• ρt is a critical parameter for the convergence
– Should be large at the beginning, to correctly drive the 

convergence
– Should become small later on, to smoothly converge
– Example : ρt =cst/t

 
( 1) ( ) t x

misclassified x
w t w t xr d+ = - å
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Non-linear classifiers: multi-layer perceptrons

• Let us take a simple example : the XOR function, which 
is not linearly separable, contrary to AND and to OR

x1 x2 OR XOR
0 0 0 (B) 0 (B)
0 1 1 (A) 1 (A)

1 0 1 (A) 1 (A)
1 1 1 (A) 0 (B)
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Non-linear classifiers: multi-layer perceptrons

• For XOR : We can consider two decision lines
– We consider where x is w.r.t g1 and g2
– We consider the combination of the two decision to take the 

final decision
• Thus 2 linear steps : 2-layer perceptron

x1 x2 y1 y2 Cla.

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)
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Non-linear classifers: multi-layer perceptrons

• We can generalize: perceptron with l 
inputs and  p « hidden » neurons realizes 
two successive classifications

– One towards the summits of an hypercube 
in the p-dimensional space

– One which separates this cube in 2 semi-
spaces by an hyperplane

– A 2-layer perceptron can thus separate 
classes that are the union of polyhedra 
(not any union though)
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Non-linear classifiers: multi-layer perceptrons

• Solution : 3-layer perceptron
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Non-linear classifiers: multi-layer perceptrons

• Until now, the decision function used was a 
step function (0 or 1)
– Decision surfaces are hyper planes

• But this is a problem for training, which is an 
optimization of a cost function
– Which implies a derivation of the cost function. 
– But the step function is not derivable
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Neural networks

• We can thus consider a 
sigmoïd and not a step 
function, and the decision 
function will become curves. 
The decision will consider the 
output neuron with the 
maximal answer
– There are efficient training 

algorithms,  based on the error 
backpropagation

– Cfr article R. Lippmann, IEEE 
Acoustics, Speech and Signal 
Processing Magasine, Avril 
1987.
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Unsupervised training

• We have non-classified training samples, we 
can do an unsupervised training of a classifier
– The samples live in their feature space
– We try to identify regions of high sample density, 

which model the sample probability distribution 
function: approximation by Gaussian laws

– This is called clustering
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Unsupervised training: clustering (k-means)

• We try to identify m classes by means of their 
centers, called centroids

• Objective : minimize the intra-class variance
• Algorithm : ISODATA (k-means)

– Choose m centroids randomly
– iterate

§ Attach each vector x to the class of the closes centroid
§ Recalculate the position of the centroids as the means of 

the vector of each class

– Until convergence
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Unsupervised training: clustering (k-means)

• Examples
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General conclusion

• Pattern recognition involved several steps
– Object segmentation

§ Image analysis

– Feature extraction
§ Geometry, invariants, etc.

– Classification
§ AI, supervised or unsupervised classification, neural 

networks

• Very various applications
• Many different methods, but the basic 

principles are very stable


