
Image analysis and Pattern Recognition

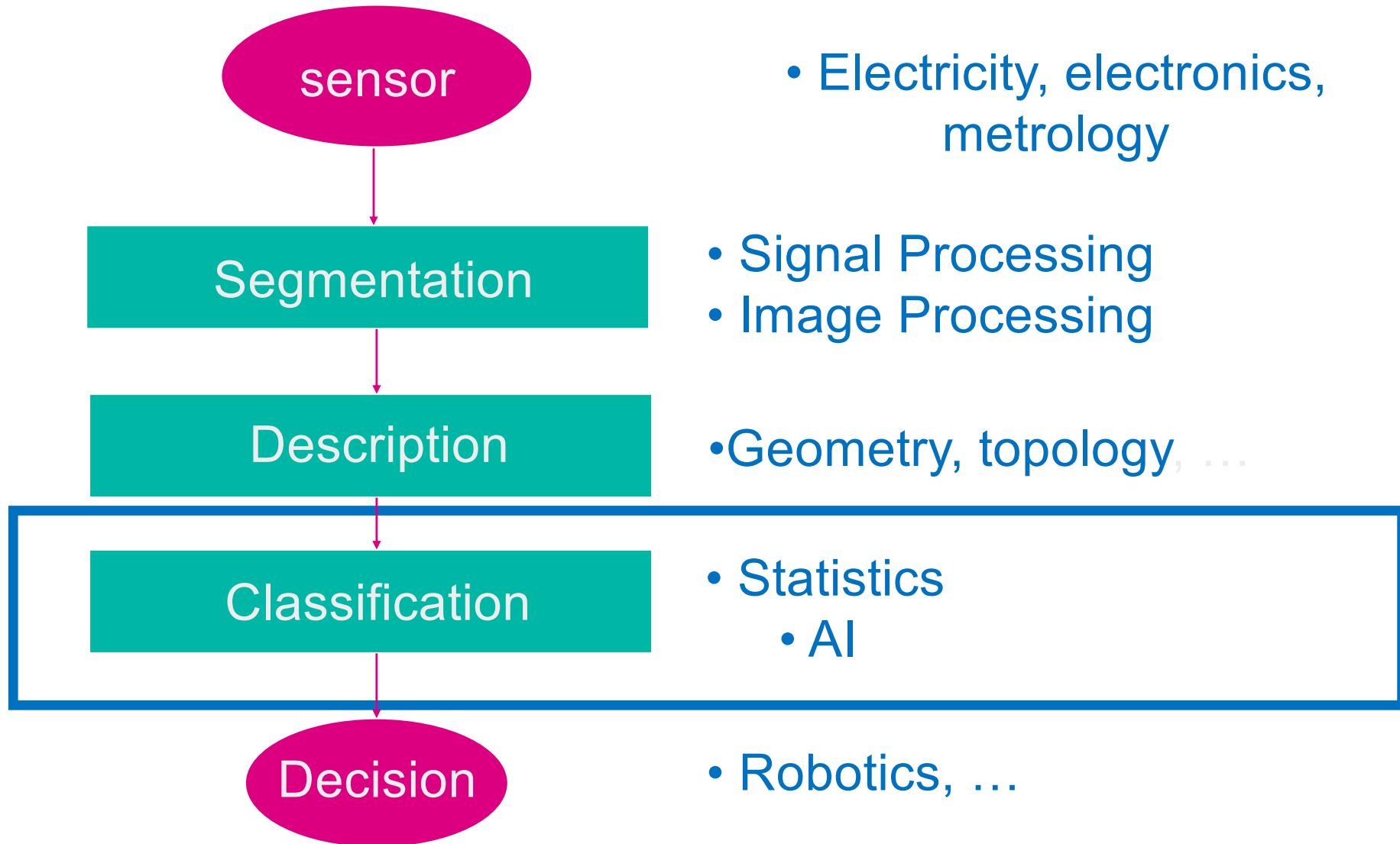
Lecture 5 : Statistical shape classification

Prof. Jean-Philippe THIRAN

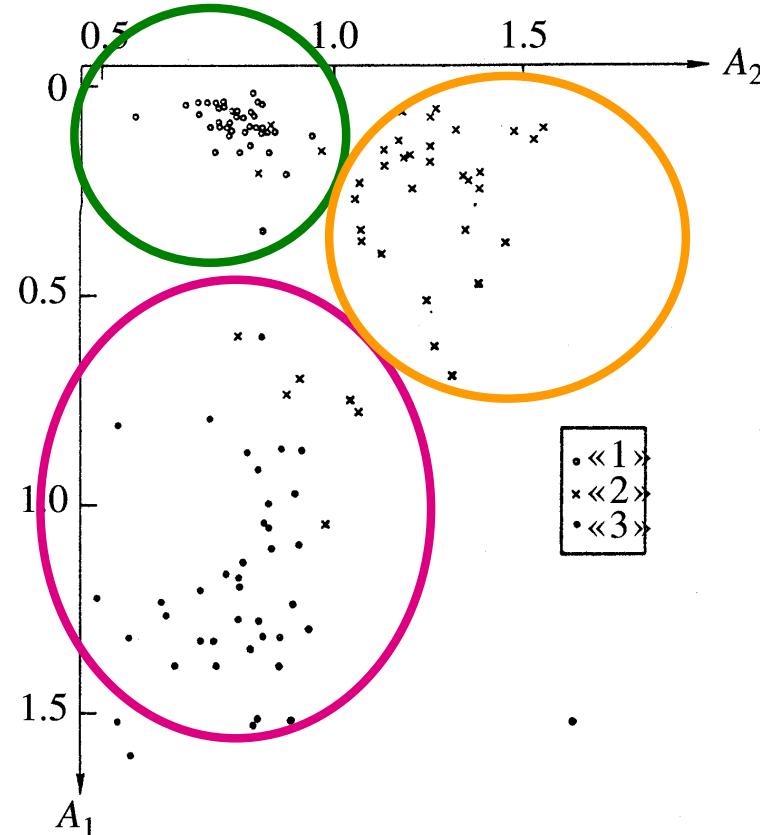
JP.Thiran@epfl.ch

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

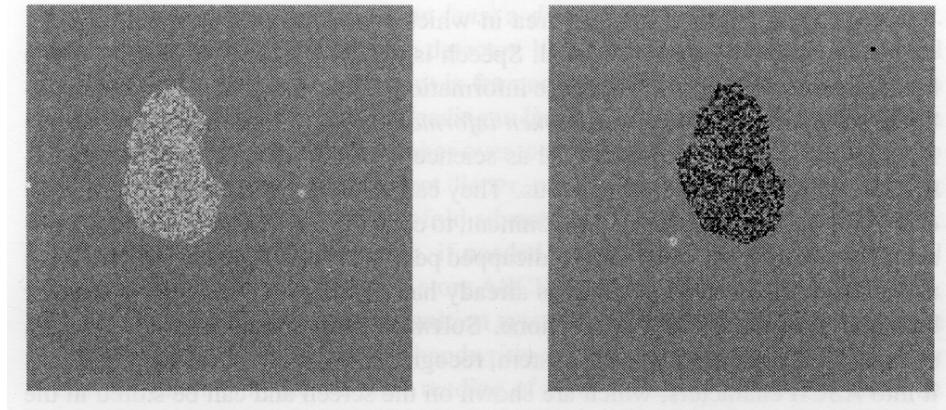
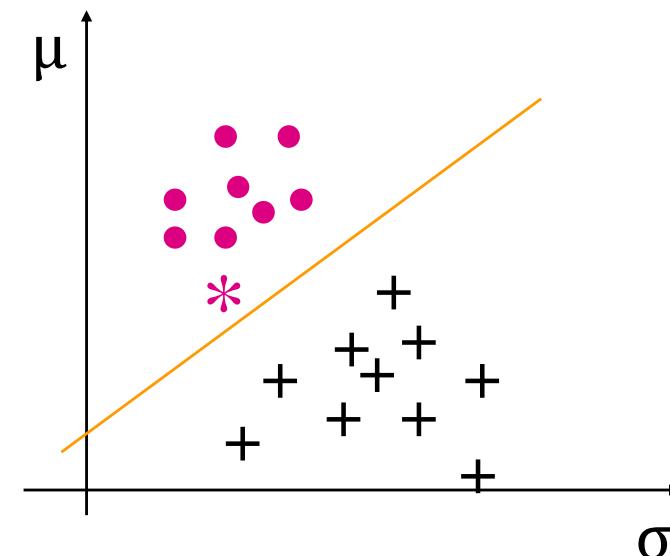
EPFL



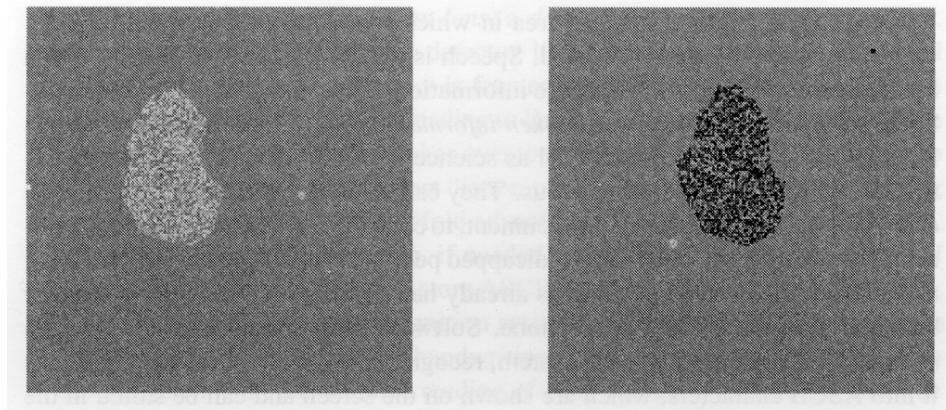
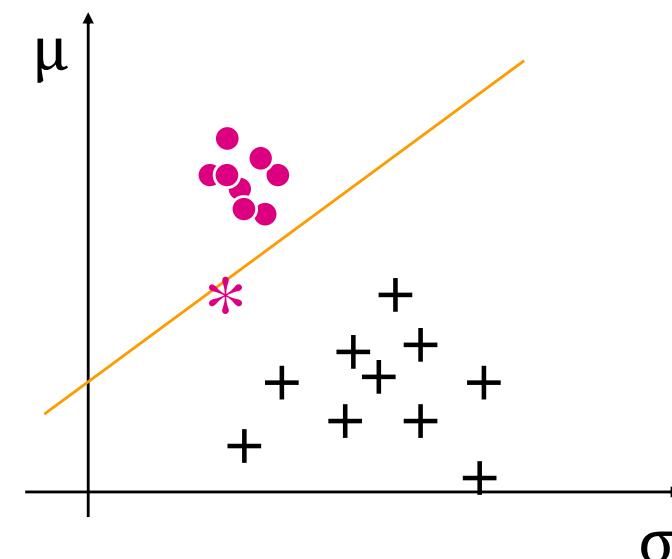
- Pattern recognition means:
 - Choose good descriptors for your application => feature vector
 - Use a classification rule to classify the feature vectors



- Another example: cancerous cells
 - Assume that we have a set of data already classified
 - Let us chose 2 features : the mean μ and the standard deviation σ of the gray levels
 - A new data point (*) has to be classified
- Generalisation:
 - Feature vector $x = [x_1, x_2, \dots, x_n]^T$
 - Role of the classifier: assign a class label to a feature vector
 - Separation of the classes in the feature space: **decision line**



- Another example: cancerous cells
 - Assume that we have a set of data already classified
 - Let us chose 2 features : the mean μ and the standard deviation σ of the gray levels
 - A new data point (*) has to be classified
- Generalisation:
 - Feature vector $x = [x_1, x_2, \dots, x_n]^T$
 - Role of the classifier: assign a class label to a feature vector
 - Separation of the classes in the feature space: **decision line**



- Supervised classifiers :
 - We have a **training set**, i.e. a set of feature vectors with their correct class label
 - We have to build a classifiers that exploits this prior information
 - *Example : Optical Character Recognition*
 - *Bayesian Classifiers*
 - *Linear Classifiers*
 - *Non-linear classifiers – neural networks*
- Unsupervised classifiers
 - We just have a set of feature vectors, without their class label
 - We have to group similar vectors to create **clusters**, and identify those clusters
 - **Clustering algorithms**

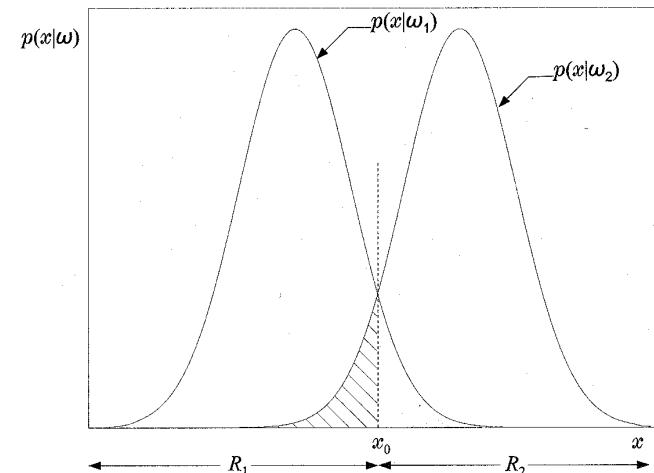
- Probabilistic approach:
 - Feature vectors are assumed to come from a probability distribution function (*pdf*)
 - We will design a classifier which will assign a feature vector to the « **most probable** » class:
 - *M classes* $w_1, w_2, \dots w_M$
 - *A feature vector* x
 - *We classify* x *in class* i *if* $P(w_i | x) > P(w_j | x)$

- Let us consider the two class problem, with known prior probabilities $P(w_1)$ and $P(w_2)$
 - Easy to evaluate or not known
- The conditional *pdfs* $p(x | w_i)$ are also assumed known
 - Can be identified from the training set
- Bayes Rule:
$$P(w_i | x) = \frac{p(x | w_i) P(w_i)}{p(x)}$$
- Bayesian classification (maximum a posteriori)

$$P(w_1 | x) \stackrel{?}{\diamond} P(w_2 | x)$$

$$p(x | w_1)P(w_1) \stackrel{?}{\diamond} p(x | w_2)P(w_2)$$

- Example : 1 feature, 2 classes
 - x_0 indicated the separation between the classes
 - There is obviously a classification error
 - But it can be shown that the Bayesian classifier minimises the classification errors



- Generalization to n classes
 - Assignment to the most probable class
 - The decision surface between classes i and j has the equation $P(w_i | x) - P(w_j | x) = 0$
 - We can also write it as follows: $g_i(x) \equiv f(P(w_i | x))$ where $f(\cdot)$ is a monotonically increasing function, called **discriminant function**.
 - Decision will thus be taken to assign the feature vector to class w_i if $g_i(x) > g_j(x)$ for all $j \neq i$
 - The decision surface is given by

$$g_{ij}(x) \equiv g_i(x) - g_j(x) = 0$$

- Normal law : the pdf follows a Gaussian law:

- 1D:
$$p(x | w_i) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- lD :
$$p(x | w_i) = \frac{1}{(2\pi)^{l/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}$$

- μ_i is the mean of class w_i
- Σ_i is the covariance matrix of size $l \times l$, defined by

$$\Sigma_i = E\left[(x - \mu_i)(x - \mu_i)^T\right]$$

- Discriminant function:

$$\begin{aligned}g_i(x) &= \ln(p(x | w_i)P(w_i)) = \ln p(x | w_i) + \ln P(w_i) \\&= -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \ln P(w_i) + c_i \\&= -\frac{1}{2}x^T \Sigma_i^{-1} x + \frac{1}{2}x^T \Sigma_i^{-1} \mu_i - \frac{1}{2}\mu_i^T \Sigma_i^{-1} \mu_i + \frac{1}{2}\mu_i^T \Sigma_i^{-1} x + \ln P(w_i) + c_i\end{aligned}$$

- Example :

si $l = 2$ et $\Sigma_i = \begin{pmatrix} \sigma_i^2 & 0 \\ 0 & \sigma_i^2 \end{pmatrix}$, we have

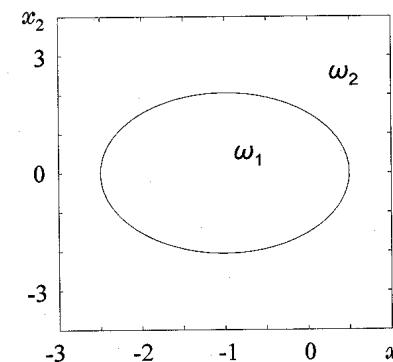
$$g_i(x) = -\frac{1}{2\sigma_i^2}(x_1^2 + x_2^2) + \frac{1}{\sigma_i^2}(\mu_{i1}x_1 + \mu_{i2}x_2) - \frac{1}{2\sigma_i^2}(\mu_1^2 + \mu_2^2) + \ln P(w_i) + c_i$$

and the decision curves $g_i(x) - g_j(x) = 0$ are (hyper)quadrics

Example : $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mu_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$(a) \quad \Sigma_1 = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.15 \end{pmatrix}, \quad \Sigma_2 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.25 \end{pmatrix}$$

$$(b) \quad \Sigma_1 = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.15 \end{pmatrix}, \quad \Sigma_2 = \begin{pmatrix} 0.15 & 0 \\ 0 & 0.1 \end{pmatrix}$$



(a)



(b)

- Special case, very frequent : Σ_i identical for all classes: $\Sigma_i = \Sigma$
 - The quadratic terms will disappear in the equation of the decision curves, as well as the constant c_i
 - Thus the discriminant function can be written as :

$$g_i(x) = w_i^T x + w_{i0}$$

$$\text{with } w_i = \Sigma^{-1} \mu_i \quad \text{and} \quad w_{i0} = \ln P(w_i) - \frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i$$

- Therefore the discriminant functions are linear and the decision curves (surfaces) hyperplanes

- Sub-particular case 1: Σ diagonal with equal values on the diagonal: $\Sigma = \sigma^2 I$
 - The discriminant functions become

$$g_i(x) = \frac{1}{\sigma^2} \mu_i^T x + w_{i0}$$

- And the decision hyperplanes are

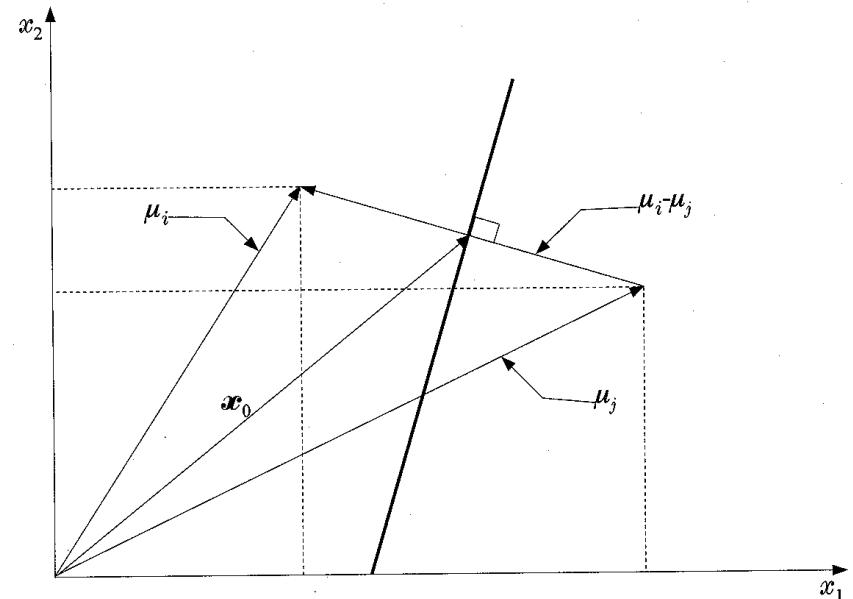
$$g_{ij}(x) \equiv g_i(x) - g_j(x) = w^T (x - x_0) = 0$$

$$\text{with } w = \mu_i - \mu_j \quad \text{and} \quad x_0 = \frac{1}{2}(\mu_i + \mu_j) - \sigma^2 \ln \left(\frac{P(w_i)}{P(w_j)} \right) \frac{\mu_i - \mu_j}{\|\mu_i - \mu_j\|^2}$$

$$g_{ij}(x) \equiv g_i(x) - g_j(x) = w^T(x - x_0) = 0$$

with $w = \mu_i - \mu_j$ and $x_0 = \frac{1}{2}(\mu_i + \mu_j) - \sigma^2 \ln \left(\frac{P(w_i)}{P(w_j)} \right) \frac{\mu_i - \mu_j}{\|\mu_i - \mu_j\|^2}$

- Thus
 - The decision hyper plane passes by x_0
 - if $P(w_1) = P(w_2)$, $x_0 = (\mu_1 + \mu_2)/2$
 - Since moreover, for every x on the decision hyperplane, $x - x_0$ is also on the hyperplane, and since $(\mu_1 - \mu_2)^T(x - x_0) = 0$, *the decision hyperplane is orthogonal to $\mu_1 - \mu_2$*



- If Σ is different from $\sigma^2 I$:

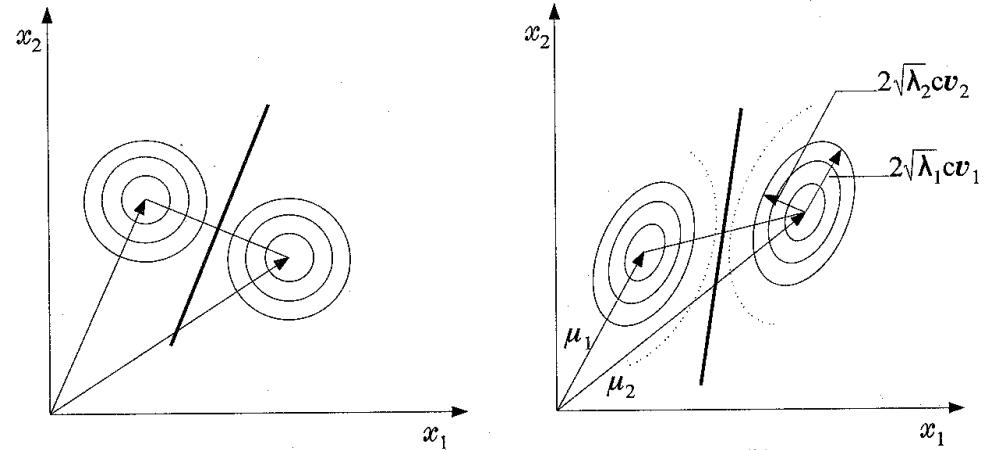
$$g_{ij}(x) \equiv g_i(x) - g_j(x) = w^T(x - x_0) = 0$$

$$\text{with } w = \Sigma^{-1}(\mu_i - \mu_j) \quad \text{and} \quad x_0 = \frac{1}{2}(\mu_i + \mu_j) - \ln\left(\frac{P(w_i)}{P(w_j)}\right) \frac{\mu_i - \mu_j}{\|\mu_i - \mu_j\|_{\Sigma^{-1}}^2}$$

$$\|\mu_i - \mu_j\|_{\Sigma^{-1}}^2 = (x^T \Sigma^{-1} x)^{1/2}$$

- Thus:

- The decision hyperplane passes by x_0
- if $P(w_1) = P(w_2)$, $x_0 = (\mu_1 + \mu_2)/2$
- *The decision hyperplane is not orthogonal to $\mu_1 - \mu_2$, but to a linear transformation of it: $\Sigma^{-1}(\mu_1 - \mu_2)$*



- Minimal distance classifier :
 - If we neglect the constants, we have

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)$$

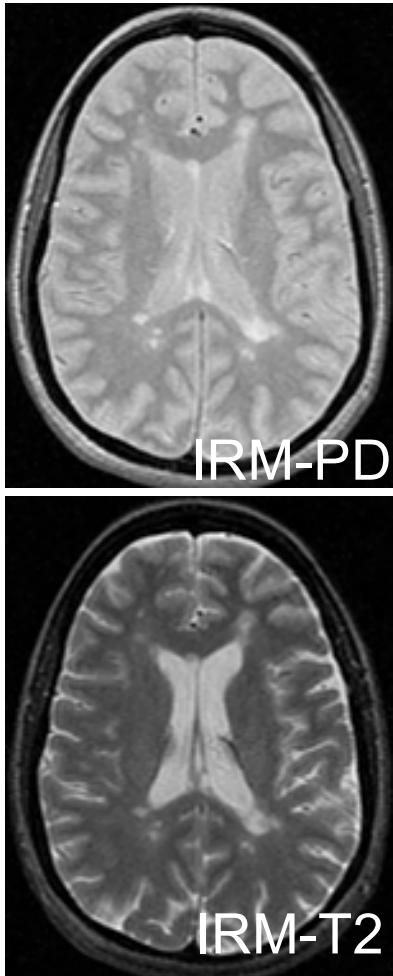
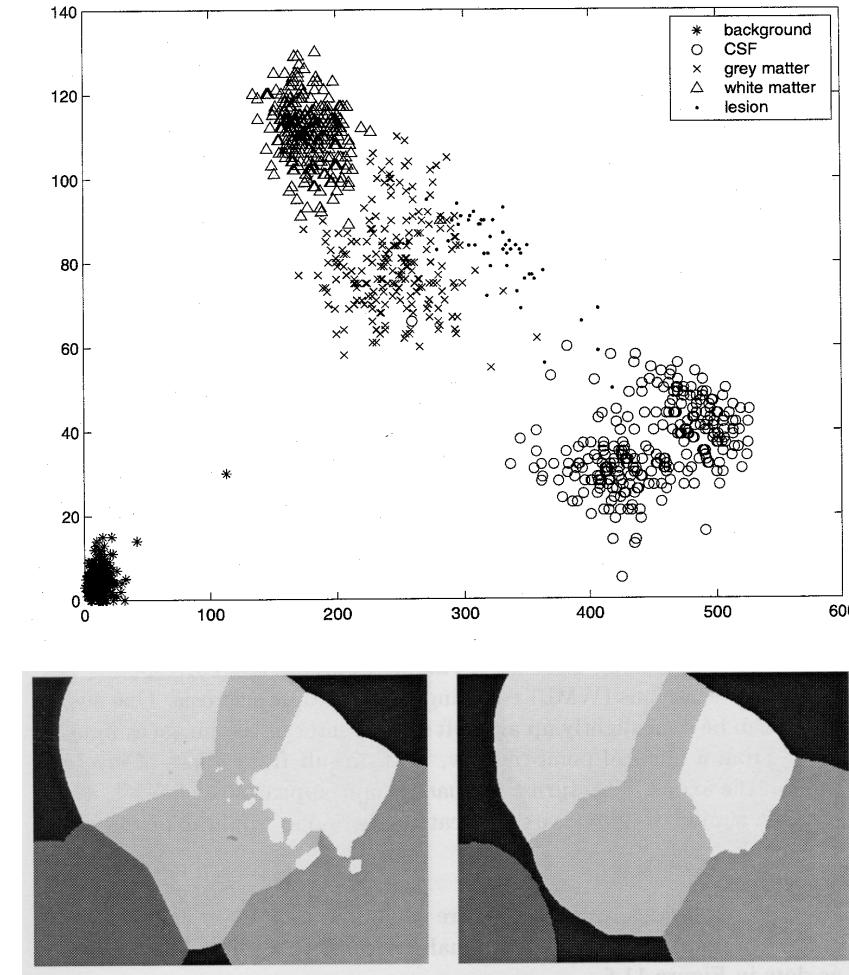
- if $\Sigma = \sigma^2 I$: *the most probable class is the one that maximizes $g_i(x)$, i.e. which minimizes the Euclidean distance*
- If Σ is not diagonal: *the most probable class is the one that maximizes $g_i(x)$, i.e. which minimizes the Mahalanobis distance*

$$d_e = \|x - \mu_i\|$$

$$d_m = \left((x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right)^{1/2}$$

- This algorithm does not make any assumption on the class pdfs
- **k -NN algorithm:**
 - We have a training set of feature vectors with their class label
 - We classify the unknown vector x in the most represented class among the k nearest neighbors of x
 - The error probability R is at least as large as the Bayesian one (Pe)
 - 1-NN : $R < 2Pe$
 - k -NN : $R < (1+1/k) Pe$

- Example:



- Let us consider again the case of a linear discriminant function. The decision surfaces are hyper planes:

$$g_{ij}(x) \equiv g_i(x) - g_j(x) = w^T x - w_0 = 0$$

- w is called the weight vector and w_0 the threshold
- w is orthogonal to the decision surface
- We can also write $w'^T x' = 0$, with $w' = [w^T, -w_0]^T$ and $x' = [x^T, 1]^T$
- Without any additional information, we can try to find the best vector w^* which best separates the classes, i.e. such that

$$w^{*T} x > 0 \quad \forall x \in \omega_1$$

$$w^{*T} x < 0 \quad \forall x \in \omega_2$$

- Optimization process :
 - Search space : space of w
 - Cost function:
$$J(w) = \sum_{x \text{ mal classifiés}} (\delta_x w^T x)$$
$$\delta_x = -1 \text{ si } x \in \omega_1, \quad \delta_x = +1 \text{ si } x \in \omega_2$$

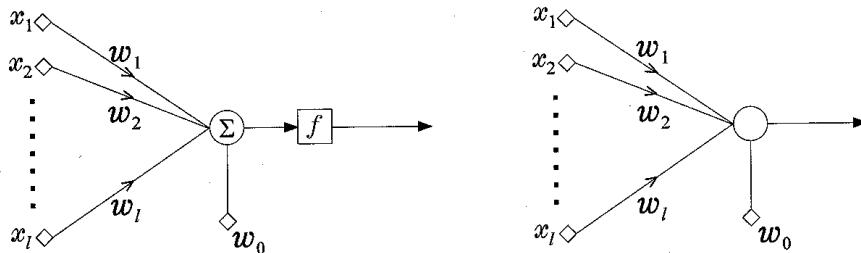
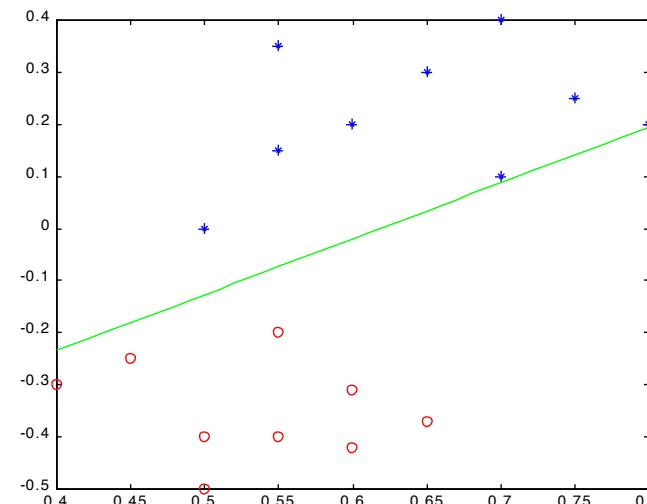
On observe que $J(w) \geq 0$
 - Optimization algorithm : gradient descent :

$$w(t+1) = w(t) - \rho_t \left. \frac{\partial J(w)}{\partial w} \right|_{w=w(t)} \quad \text{with} \quad \frac{\partial J(w)}{\partial w} = \sum_{x \text{ mal classifiés}} \delta_x x$$

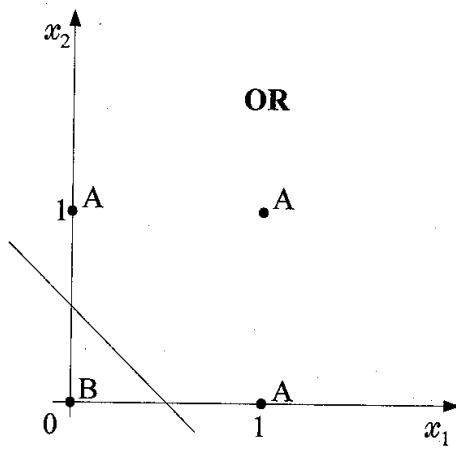
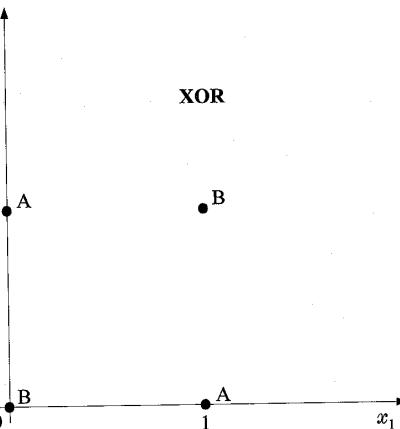
$$w(t+1) = w(t) - \rho_t \sum_{\text{misclassified } x} \delta_x x$$

$$w(t+1) = w(t) - \rho_t \sum_{\text{misclassified } x} \delta_x x$$

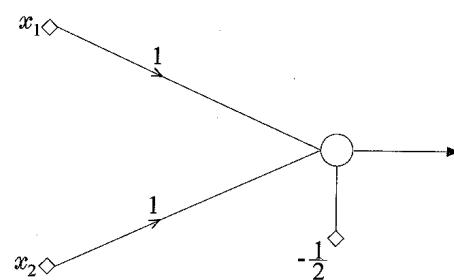
- ρ_t is a critical parameter for the convergence
 - Should be large at the beginning, to correctly drive the convergence
 - Should become small later on, to smoothly converge
 - Example : $\rho_t = \text{cst}/t$



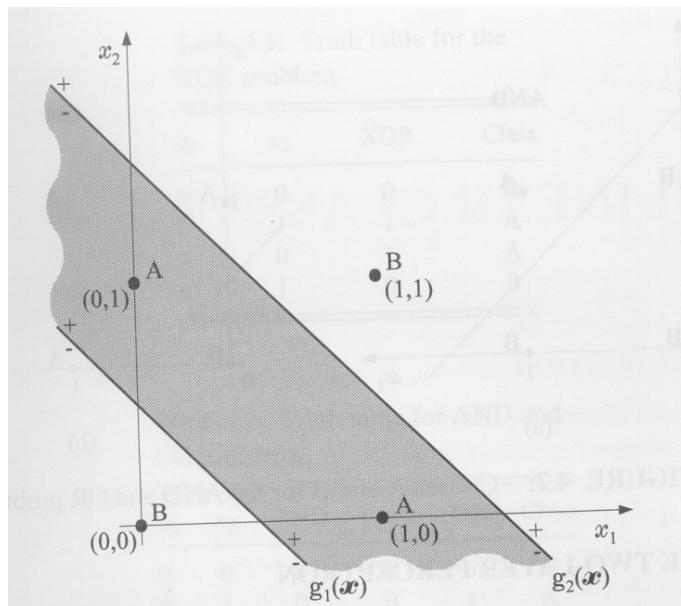
- Let us take a simple example : the XOR function, which is not linearly separable, contrary to AND and to OR



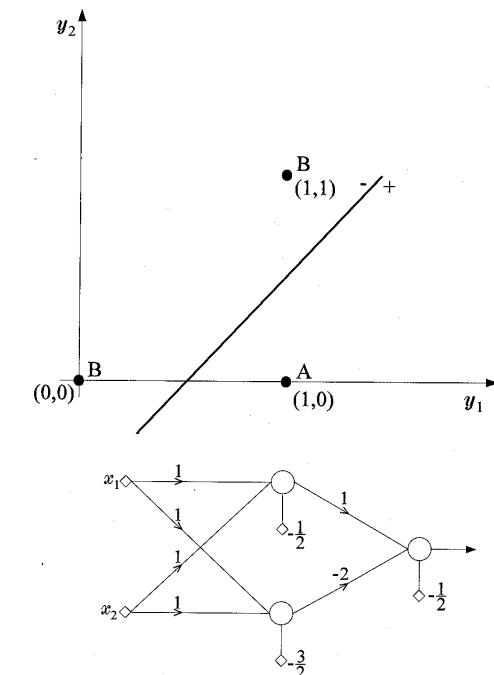
x1	x2	OR	XOR
0	0	0 (B)	0 (B)
0	1	1 (A)	1 (A)
1	0	1 (A)	1 (A)
1	1	1 (A)	0 (B)



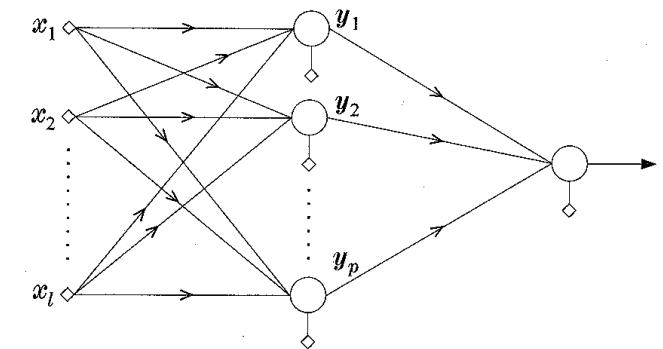
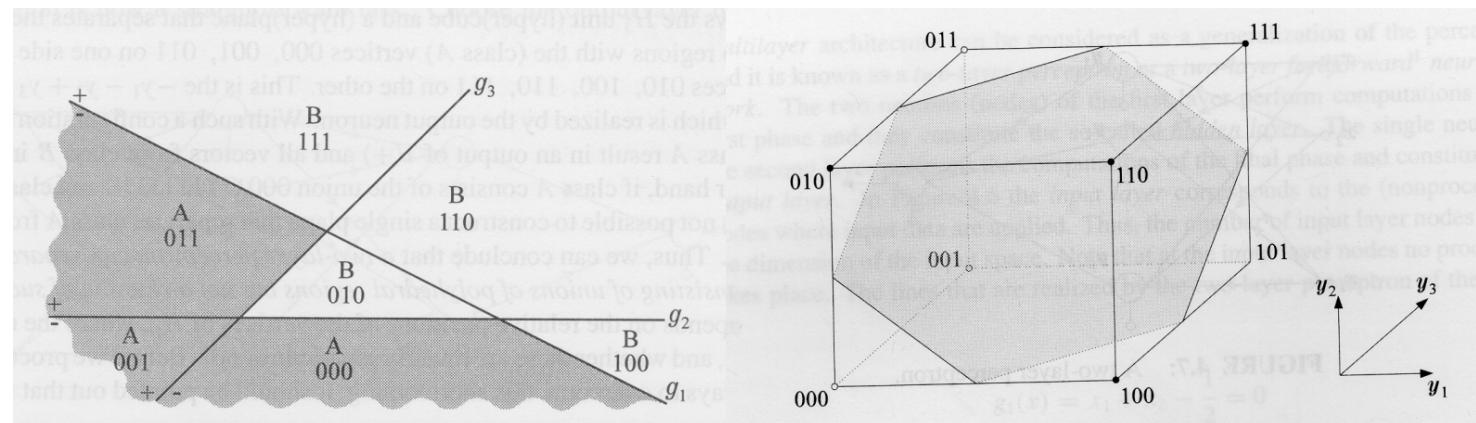
- For XOR : We can consider two decision lines
 - We consider where x is w.r.t g_1 and g_2
 - We consider the combination of the two decision to take the final decision
- Thus 2 linear steps : 2-layer perceptron



x1	x2	y1	y2	Cla.
0	0	0(-)	0(-)	B(0)
0	1	1(+)	0(-)	A(1)
1	0	1(+)	0(-)	A(1)
1	1	1(+)	1(+)	B(0)

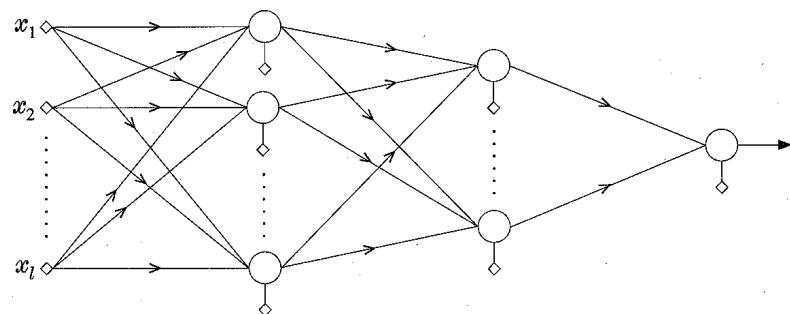


- We can generalize: perceptron with l inputs and p « hidden » neurons realizes two successive classifications
 - One towards the summits of an hypercube in the p -dimensional space
 - One which separates this cube in 2 semi-spaces by an hyperplane



- A 2-layer perceptron can thus separate classes that are the union of polyhedra (not any union though)

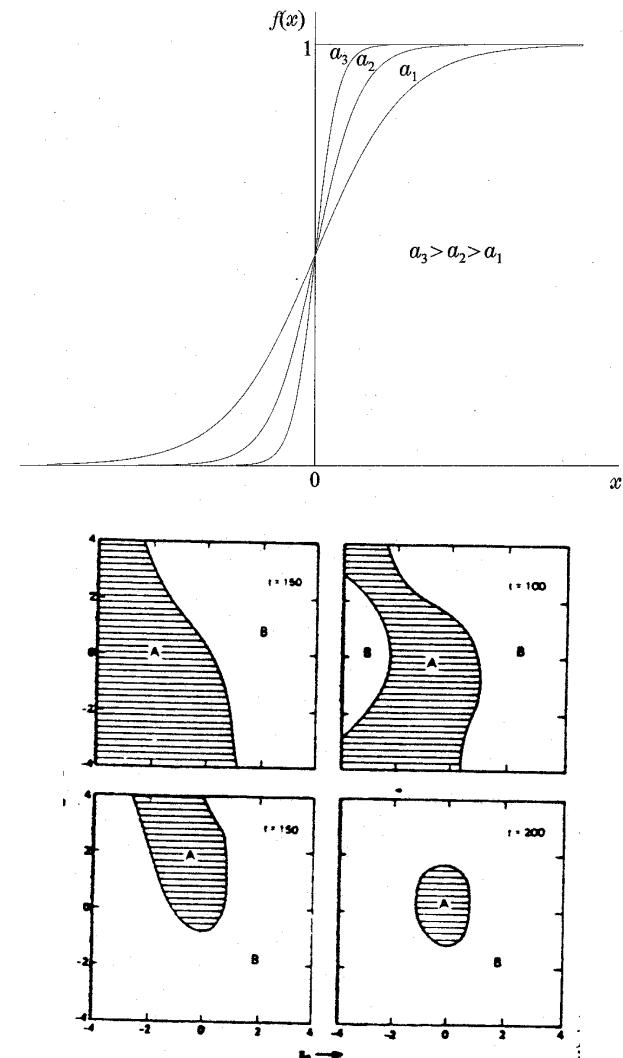
- Solution : 3-layer perceptron



STRUCTURE	TYPES OF DECISION REGIONS	EXCLUSIVE OR PROBLEMS	CLASSES WITH MESHEO REGIONS	MOST GENERAL REGION SHAPES
SINGLE-LAYER	HALF PLANE BOUNDED BY HYPERPLANE	(A, B)	(A, B)	TRIANGLE
TWO LAYER	CONVEX OPEN OR CLOSED REGIONS	(A, B)	(A, B)	ANY POLYHEDRAL
THREE-LAYER	ARBITRARY (Complexity Limited By Number of Regions)	(A, B)	(A, B)	ANY POLYHEDRAL

- Until now, the decision function used was a step function (0 or 1)
 - Decision surfaces are **hyper planes**
- But this is a problem for training, which is an optimization of a cost function
 - Which implies a **derivation of the cost function**.
 - But the step function is not derivable

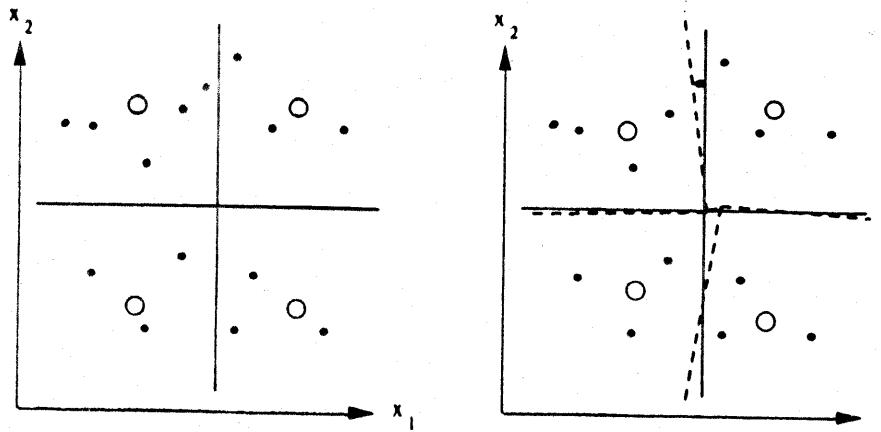
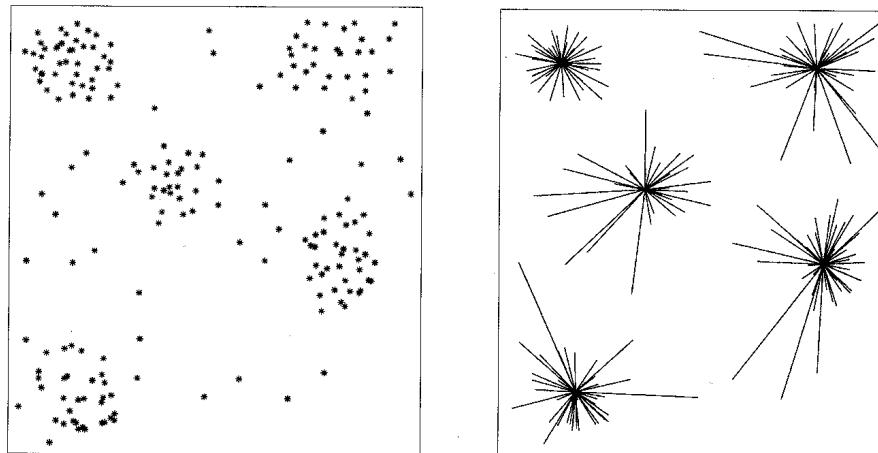
- We can thus consider a **sigmoid** and not a step function, and the decision function will become curves. The decision will consider the output neuron with the maximal answer
 - There are efficient training algorithms, based on the error **backpropagation**
 - Cfr article R. Lippmann, IEEE Acoustics, Speech and Signal Processing Magazine, Avril 1987.



- We have non-classified training samples, we can do an unsupervised training of a classifier
 - The samples live in their feature space
 - We try to identify regions of high sample density, which model the sample probability distribution function: **approximation by Gaussian laws**
 - This is called *clustering*

- We try to identify m classes by means of their centers, called *centroids*
- Objective : minimize the intra-class variance
- Algorithm : ISODATA (k-means)
 - Choose m centroids randomly
 - iterate
 - Attach each vector x to the class of the closes centroid
 - Recalculate the position of the centroids as the means of the vector of each class
 - Until convergence

- Examples



- Pattern recognition involved several steps
 - Object segmentation
 - *Image analysis*
 - Feature extraction
 - *Geometry, invariants, etc.*
 - Classification
 - *AI, supervised or unsupervised classification, neural networks*
- Very various applications
- Many different methods, but the basic principles are very stable