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The Pattern Recognition System 2
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ﬁo metrology
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Shape classification

Pattern recognition
means:

Choose good descriptors

for your application =>
feature vector

Use a classification rule
to classify the feature
vectors

@
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Shape classification 4

e Another example: cancerous
cells

— Assume that we have a set of
data already classified

— Let us chose 2 features : the
mean J and the standard
deviation o of the gray levels

— A new data point (*) has to
be classified

e Generalisation:
— Feature vecotr x=[x4, X,, ...
T
Xp]
— Role of the classifier: assign

a class label to a feature
vector

— Separation of the classes in
the feature space: decision
line
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Supervised vs unsupervised classifiers 6

e Supervised classifiers :

We have a training set, i.e. a set of feature vectors with their
correct class label

We have to build a classifiers that exploits this prior
information

Example : Optical Character Recognition
Bayesian Classifiers

Linear Classifiers

Non-linear classifiers — neural networks

e Unsupervised classifiers
— We just have a set of feature vectors, without their class label
— We have to group similar vectors to create clusters, and

identify those clusters
Clustering algorithms
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Bayesian classifiers 7

e Probabilistic approach:

— Feature vectors are assumed to come from
a probabillity distribution function (pdf)

— We will design a classifier which will assign
a feature vector to the « most probable »
class:

= M classes w;, w,, ... wy
= A feature vector x
= We classify x in class i if P(w; | x) > P(w; | x)
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Bayesian classifiers

Let us consider the two class problem, with known

prior probabilities P(w;) and P(w,)
— Easy to evaluate of not known

The conditional pdfs p(x |w;) are also assumed
— Can be identified from the training set

B Rule:
ayes ue P(Wl|x)=p(x|wz) P(Wz)
p(x)
Bayesian classification (maximum a posteriori)

P(w, | x) <?> P(w, | x)

(x| w)P(w,) <> p(x | w,) P(w,)

known
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Bayesian classifiers

e Example : 1 feature, 2
classes
— xyindicated the separation
between the classes

— There is obviously a
classification error

— But it can be shown that the
Bayesian classifier minimises
the classification errors
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Bayesian classifiers 10

e (GGeneralization to n classes
— Assignation to the most probable class

— The decision surface between classes i and j has
the equation  P(w;, | x)—P(w, | x)=0
— We can also write it as follows: g;(x)= f(P(w, | x))

where f(.) is a monotonally increasing function,
called discriminant function.

— Decision will thus be taken to assign the feature
vector to class w; if g;(x) > gi(x) for all j # i
— The decision surface is given by

g,(x)=g(x)—g;(x)=0
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Bayesian classification for normal laws

11

e Normal law : the pdf follows a Gaussian law:

1 _l(ﬂjz
- 1D:  p(x|w)= e N °
N27mo
1 L) 5 )
- D p(x|w)= e’
(272_)1/2 |zl 172

= u; IS the mean of class w,
= X Is the covariance matrix of size [ x [, defined by

S, =E|(x—u)(x—p)" |

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

=Pi-L



Bayesian classification for normal laws

e Discriminant function:

g,(x) =In(p(x|w)P(w)) =In p(x|w,)+InP(w,)
— _%(x_lui)TZi_l(x_lui)+lnP(Wi)+Ci

1 1 1 1

12

=3 x' X x+ > X' = S e+ > 1w S x+In P(w)+c,

2
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Bayesian classification for normal laws 13

e Example :

0
s1/=2et Zi:(a’ j,wehave

2
0 o

1 1 1
g.(x)=— > (xl2 +x22)+—2(,uﬂx1 +,ul.2x2)——2 (,ul2 +,u§)+1nP(wl.)+ci
20 o, 20.

i i

and the decision curves g,(x) — g,(x) = 0 are[(hyper)quadric

Example : g, ={O},,u2 :F}
0 0 A e
@ 5= 0 |5 =[" ) j | @w /
0 0.15 0 025) o | w @
®) - 0.1 0 5 0.15 o) . e l - \
0 0.15 0 0.1) s 5 7 o = w5 0 s
(a) (b)
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Bayesian classification for normal laws 14

e Special case, very frequent : 2, identical for all
classes: 2, = 2

— The quadratic terms will disappear in the equation of
the decision curves, as well as the constant c;

— Thus the discriminant function can be written as :

T
gi(x) =W, X+ W,

with w.=3"4 and w,=In P(wl.)—% w7

— Therefore the discriminant functions are linear and
the decision curves (surfaces) hyperplanes
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Bayesian classification for normal laws 15

e Sub-particular case 1: % diagonal with equal
values on the diagonal: 2 =0%/

— The discriminant functions become

1
g (x)= > /JiTx + W
O

— And the decision hyperplanes are

g; (=g () -g;(x)=w (x-x)=0
1

. P(w —
withw= g, -p; and x0=5(yi+,uj)—azln( (W’)]‘ﬂ al

P(Wj) U, —lujHZ
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Bayesian classification for normal laws 16

gij('x) Eg,-(x)—gj(x) = WT(X—)CO) =0

1
=2

withw=yg -pu, and x,= (,u,-+,uj)—c721n( ’J‘

e Thus

— The decision hyper plane
passes by X,

— if Pwy)=P(w,), x0=(u;+u,)/2

— Since moreover, for every x
on the decision hyperplane, x-
xy IS also on the hyperplane,
and since (u;-u,) (x-x,)=0, the
decision hyperplane is
orthogonal to u;-u,
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Bayesian classification for normal laws 17

o |f X is different from o2/ :
gij(x)Egi(x)_gj(x)ZWT(x—xo):O

: - 1 P(Wi) H,— H;
with w=X 1(,ul.—,uj) and xO:E(,ul.+,uj)—ln(P(W )j -
J H'ui _’UJ'Hz—l
Hﬂl ,UJ — (XTZ x)l/Z
e Thus: A
The decision hyperplane passes N
by Xo

— if P(w)=P(w,), xO0=(p;115)/2
— The decision hyperplane is not

orthogonal to u;-u,, but to a linear
transformation of it:>(u,.u,) | .
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Bayesian classification for normal laws 18

e Minimal distance classifier :
— If we neglect the constants, we have

gi(x) — _%(‘x_/’li)Tzi_l(x_lui)

if 2 =02/ : the most If 2 is not diagonal: the

probable class is the most probable class is

one that maximizes the one that

g.(x), I.e. which maximizes g;(x), I.e.

minimizes the which minimizes the

Euclidean distance Mahalanobis distance
de — ||x o /ui

d, =((x—p)=" (- p1))
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k nearest neighbor classifiers 19

e This algorithm does not make any assumption
on the class pdfs

e k-NN algorithm:

— We have a training set of feature vectors with their
class label

— We classify the unknown vector x in the most
represented class among the k nearest neighbors of
X

— The error probability R is at least as large as the
Bayesian one (Pe)
= 1-NN : R < 2Pe
= k-NN : R < (1+1/k) Pe

N\ Signal Processing Laboratory (LTS5) E P F L
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland



k nearest neighbor classifiers

e Example:
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Linear classifiers 21

e |Let us consider again the case of a linear discriminant
function. The decision surfaces are hyper planes:

2,(x)=g,(x)—g,(x) = wx—w, =0

— w is called the weight vector and w, the threshold
— wis orthogonal to the decision surface
— We can also write. w" x'=0, withw'=[w',-w,]' and x'=[x",1]’

— Without any additional information, we can try to find the best
vector w* which best separates the classes, i.e. such that

w* x>0 Vxewo

w* x<0 Vxeo,
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Linear classifier: the perceptron

e Optimization process :
— Search space : space of w

- Costfunction: jowy= ¥ (5,w'x)

x mal classifiés

X

On observe que J(w) >0

— Optimization algorithm : gradient descent

w(t+1):w(t)—pt% %:

with

w=w(t)

wit+D)=wt)-p, > Sx

misclassified x
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Linear classifier: the perceptron 23

wit+)=wt)-p, > Ox

misclassified x

e p,is a critical parameter for the convergence

— Should be large at the beginning, to correctly drive the
convergence

— Should become small later on, to smoothly converge
— Example : p,=cst/t

-0.5 L o " L
0.4 0.45 0.5 0.55 0.6 0.6
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Non-linear classifiers: multi-layer perceptrons 24

e | et us take a simple example : the XOR function, which
IS not linearly separable, contrary to AND and to OR

;'”2“ ' :
OR XOR
x1 X2 OR XOR
1A A - 0 0 0(B) |0(B)
0 1 1(A) [1(A)
B R o A 1 0 1(A) |[1(A)
" ! S ‘ 1 1 1(A) |0 (B)
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Non-linear classifiers: multi-layer perceptrons 25

e For XOR : We can consider two decision lines

— We consider where xisw.r.t g7 and g2
— We consider the combination of the two decision to take the
final decision

e Thus 2 linear steps : 2-layer perceptron

x1 X2 y1 y2 | Cla.

0 0 | 0(-) | 0¢-) | B(O)

0 1 1) | 0() | A | oo®
1 0 | 1(+) | 0() | A(1)

1 T 1 1(+) | 1(+) | B(O)
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Non-linear classifers: multi-layer perceptrons 26

e \We can generalize: perceptron with /
inputs and p « hidden » neurons realizes
two successive classifications

— One towards the summits of an hypercube
in the p-dimensional space

— One which separates this cube in 2 semi-
spaces by an hyperplane

011

010

110

Boi: s Sl

000
— A 2-layer perceptron can thus separate

classes that are the union of polyhedra
(not any union though)

100
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Non-linear classifiers: multi-layer perceptrons 27

e Solution : 3-layer perceptron

8
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Non-linear classifiers: multi-layer perceptrons 28

e Until now, the decision function used was a
step function (0 or 1)
— Decision surfaces are hyper planes

e But this is a problem for training, which is an
optimization of a cost function
— Which implies a derivation of the cost function.
— But the step function is not derivable
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Neural networks

e \WVe can thus consider a
sigmolid and not a step
function, and the decision
function will become curves.
The decision will consider the
output neuron with the

29

maximal answer

— There are efficient training
algorithms, based on the error
backpropagation

— Cfr article R. Lippmann, IEEE

Acoustics, Speech and Signal
Processing Magasine, Auvril
1987.
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Unsupervised training

30

¢ \We have non-classified training samples, we
can do an unsupervised training of a classifier
— The samples live in their feature space

— We try to identify regions of high sample density,
which model the sample probability distribution
function: approximation by Gaussian laws

— This is called clustering
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Unsupervised training: clustering (k-means) 31

e \We try to identify m classes by means of their
centers, called centroids

e Objective : minimize the intra-class variance
e Algorithm : ISODATA (k-means)

~— Choose m centroids randomly

— Iterate

» Atftach each vector x to the class of the closes centroid

= Recalculate the position of the centroids as the means of
the vector of each class

— Until convergence

-~
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Unsupervised training:

clustering (k-means)

e Examples

L
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General conclusion 33

e Pattern recognition involved several steps
— Object segmentation
= Image analysis

— Feature extraction
= Geometry, invariants, efc.

— Classification

= Al, supervised or unsupervised classification, neural
networks

e \ery various applications

e Many different methods, but the basic
principles are very stable
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